氦镉激光器的轴向气压差效应

曾永健 邱明新

(上海市激光技术研究所)

提 要

本文在实验上发现氦镉激光器工作时存在较高的轴向气压差,阳极气压比阴极高达1至2托,约为氦 工作气压的一半,为纯氦放电时的三倍。研究了气压差与激光功率输出、噪声以及稳定性的关系。用扩散 回路减小气压差后,4416Å激光输出功率由80mW增大到110mW,噪声降低到0.9%,成为大功率低 噪声氦镉激光器,功率稳定性也明显提高。这时,可求得从阴极到阳极的单向流动,即 Langmuir 流的流 量率为15 cm³/sec。对实验结果作了讨论,并认为降低气压差可使阴极溅射减小,增长激光器的寿命。

一、引 盲

气体放电管内,由于管壁效应产生轴向气压差,阳极气压高于阴极⁽¹⁾,轴向放电气体激 光器件也存在这样的气压差。一些放电电流较大的激光器,如氢离子激光器,气压差使激光 无法连续工作,必须采用回气管降低气压差。氦氖激光器中气压差较小,没有必要引入回气 管。氦镉激光器的气压差效应还未见报道。虽则有人使用栅网结构的回气装置^(2,3),其目的 是使镉蒸汽浓度趋于均匀,但没有研究氦气压差效应。我们发现在氦镉激光器中,放电产生 的气压差可达总气压的一半以上,气压差效应改变了放电条件。因此,用扩散回路降低气压 差,可使激光功率增加,噪声减小,功率稳定性改善。

二、实验结果

1. 氦镉激光器中的气压差

实验的氦镉激光器为外腔结构,石英布氏窗。石英放电管有效长度为137 cm,内径

图 1 实验装置示意图 1-放电管; 2-扩散回路; 3--阴极 4--阳极; 5--镉炉

Fig. 1 Experiment arrangment 1—discharge tube; 2—diffusion return path; 3—cathode; 4—anode; 5—cadmium oven 3.2mm,输出端是透过率为5%的平面镜,另一端 反射镜曲率半径为5m,反射率为99.7%。阴极与 阳极之间有一条扩散回路,如图1所示。开启扩 散回路可降低阴阳极之间的气压差,关闭时,可用 油压计测量阴阳极之间的气压差。用此装置可观 察气压差对激光特性的影响。

实验发现,放电时阳极氦气压高于阴极。在 氦气压为2.7 torr,放电电流为150 mA时,纯氦放 电的气压差为0.51 torr。加热镉源使激光器输出

最佳时, 气压差约为纯氦放电时的三倍, 达1.58 torr。镉源加热后, 测量得到激光器的气压 ^{收稿日期: 1981年5月22日, 收到修改稿日期: 1981年12月30日}

Fig. 2 Discharge current dependence of pressure difference under 3.1 torr helium pressure

差与放电电流成正比关系,如图2所示。在150mA放电电流时,气压差约为氦气压的一半。 图 3 为气压差与氦气压关系的测量结果。气压差随氦气压增大而减小。 纯气体放电时, 气压差由 Rüttenauer 经验公式表达[1]

$$\Delta P = 2.4 \times 10^{-6} \; \frac{IE \sqrt{M}}{PR^4} \; L, \tag{1}$$

式中E为电场强度(V/cm), I为放电电流(A), L、R分别为管长和半径(cm), M为原子 量, P和 AP分别为氦气压和气压差(托)。图 2表明,在氦镉混合气体放电时,气压差与放 电电流成线性关系,这与(1)式中纯气体放电时的规律相同,而图 3 的曲线表明,混合气体放 电时的气压差与氦气压的关系偏离纯气体放电时的反比关系。

气压差对激光输出功率有很大影响。在最佳气压下,当开启扩散回路时,气压差就降低, 功率增长 输 出功 率 (%) (mW) 80 40 80 0 40 40 3 Б 2 4 氦气压(torr) 开启扩散回路后激光功率增长与氦气 图 4 压的关系(放电电流 140 mA) ●--关闭扩散回路;〇-开启扩散回路; ■--功率增长 Fig. 4 Increase of laser power versus helium pressure with a return path at 140 mA discharge current -return path off; O-return path on; -increase of power

2. 气压差与激光输出功率

这时 4416 Å 波长的激光功率从 80 mW 增大到 110 mW。最大增长率可高达一倍以上。在较高或较低气压时,增长率下降,如图 4 所示。

图 5 为扩散回路开启前后 4416 Å 波长的激光功率随放电电流变化的关系。开启扩散回路使气压差减小,输出功率明显地增加,在最佳电流 150 mA 时,功率增加最大。

3. 气压差与激光噪声及稳定性

在不同氦气压和放电电流下都发现,当开启扩散回路即减小气压差后,激光噪声比值随 之下降。激光噪声比值定义为噪声有效值与平均功率之比。噪声比值用GD-5光电二极管、 PZ-8 直流数字电压表和 DA-16 晶体管毫伏表测量。图 6 为 4416 Å 和 3250 Å 激光噪声与 放电电流的关系。扩散回路使 4416 Å 噪声由 4% 下降到 1.3%,使 3250 Å 噪声下降到 0.9%,成为大功率低噪声的氦镉激光器件。

实验还发现,扩散回路使输出功率稳定性明显提高。激光功率的起伏由 XWC-100A 记录仪记录,如图 7 所示。扩散回路可使峰-峰起伏由原来的 45% 降低到 8%。

三、讨 论

1. 氦镉激光器中的气压差效应

由气体放电理论,气压差因管壁效应引起,而管壁效应与离子质量有关。实验得到氦镉 混合气体的气压差约为纯氦时的3倍,作为一个估计,根据(1)式纯气体放电时气压差与离 子质量的平方根成正比,可推算得该条件下平均离子质量约为36,并可进一步求得镉离子 约占总离子数的三分之一。镉的电离电位较低,虽然在混合气体中镉原子与氦原子浓度比 为10⁻³,但由于潘宁(Penning)效应及电荷效应引起较高的镉离子浓度。 镉离子质量较氮 离子大得多,加剧了管壁效应,使气压差增大。

气压差与氦气压的关系偏离(1)式的反比关系,主要是公式(1)只适用于纯气体。另外, 在不同气压时,镉原子和镉离子在总原子和总离子中所占的比例不同,即在不同氦气压时, 混合气体具有不同的平均离子质量。

2. 气压差效应对输出功率的影响

最佳气压时, 气压差使毛细管两端区域的气压偏离最佳气压较大, 工作在最佳气压值附 近的毛细管长度减小, 缩短了激光有效增益长度。开启扩散回路后, 气压差减小, 使工作在 最佳气压下的激光管长度增大, 增长了有效增益长度, 激光输出功率增加。工作在高于或低 于最佳气压时, 开启扩散回路, 有效增益长度增加较小, 输出功率增长率随氦气压升高或降 低而减小。氦气压较低时, 出现负的增长率。这表明此时由于气压差, 毛细管内部分区域的 氦气压接近最佳气压, 减小气压差反使整个毛细管气压远离最佳气压值。

3. 气压差对激光噪声的影响

开启扩散回路后,激光噪声减小与激光功率低频涨落减小的原因相似。在无扩散回路 的氦镉激光器中,由于气压差效应,放电毛细管内存在 Langmuir 流和 Poiseuille 流,两者 方向相反,大小相等,径向分布不同,互相干扰引起紊流,紊流引起镉浓度和放电参量的局 部起伏,从而引起增益起伏;同时,由于放电等离子体的不稳定性,紊流的扰动增强了行 走辉纹和等离子体中不稳定的各种波动,增大了噪声及输出功率的起伏。开启扩散回路后, Poiseuille 流由扩散回路从阳极反向流回阴极,激光管内只存在由阴极到阳极的 Langmuir 流的单向流动,减小了对放电气体的扰动,使噪声降低。由于放电条件不变,Langmuir 流 仍等于关闭扩散回路时的 Poiseuille 流的流量率^[4]

$$V_L = V_P = \frac{\pi}{8\eta} \cdot \frac{\Delta P \cdot R^4}{L},\tag{2}$$

式中 n 为粘滞系数。由于镉原子浓度很低, 混合气体的粘滞系数接近纯氦的数值, 经温度修 正后, 得到激光毛细管中存在从阴极到阳极的 Langmuir 流的流量率为 15 cm³/sec。

4. 气压差与阴极溅射的关系

阴极溅射速率与气压 5 次方成反比, 阴极溅射是氦镉激光器氦气清除的主要原因^[4]。由 于气压差引起阴极附近的气体压力下降, 使阴极溅射速率增大。开启扩散回路, 气压差减小, 促使阴极附近的气压升高, 从而提高了激光器的寿命。

四、结 论

氦镉激光器的轴向气压差效应减小了激光输出功率,并使激光噪声和功率不稳定性增大。因此,在氦镉激光器结构中加扩散回路可减小气压差,有助于增大激光输出,降低噪声, 提高功率稳定性和增长激光器寿命。

参考文献

[1] G. Francis; «The Glow Discharge at Low Pressure», Handbuch der Physik, Band 22, (Berlin, 1956), 199.

[2] K. G. Hernqvist; A. P. L., 1970, 16, No. 11 (1 Jun), 464.

[3] K. G. Hernqvist; IEEE J. Q. E., 1972, QE-8, No. 9 (Sep), 740.

[4] 邱明新等; 《四川激光》, 1980, 1, No. 5, 11.

Axial effects of pressure difference on He-Cd laser

ZENG YONGJIAN AND QIU MINGXIN (Shanghai Institute of Laser Technology)

(Received 22 May 1981; revised 27 December 1981)

Abstract

It is found that there exists a notable axial pressure difference of 1 to 2 torr during the operation of the He-Cd laser, which is about a half of the He operation pressure or 3 times of the pressure difference in pure He electric discharge.

The effects of pressure difference on laser output, noise and stability are investigated. After using a diffusion return path, the laser output power at 4416 Å is increased from 80 mW to 110 mW, the noise is decreased to 1.3% at 4416 Å and to 0.9% at 3250 Å, and the stability of laser output is greatly improved. The rate of Langmuir flow moving along the direction from the cathode to the anode is calculated to be $15 \text{ cm}^3/\text{sec}$. The experiment results are discussed. The decrease of pressure difference may reduce the sputtering of cathode, and thus prolongs the lifetime of laser.